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AGING OF THE LIVER 

1. INTRODUCTION 

Most organs are altered morphologically and functionally in old animals.  
To a varying extent, these age-related changes lead to a progressive loss of 
differentiated functions and physiologic capacities1.  For the liver, the data 
are inconsistent and conflicting regarding the effects of aging on structure 
and function2.  A number of reviews dealing with the physiology, structure 
and function of the aging liver have been published recently3-5.  Reported 
morphological and structural changes do not generally correlate with the 
functional alterations found in the liver with age.  These disparities raise the 
question of whether or not the observed changes with age actually 
compromise liver function, which led to the idea that the liver ages well 
when compared to other organs.   

However, as described in a number of the reviews cited above, the liver 
does decline functionally with age.  Our recent microarray studies of mice 
found that aging was accompanied by changes in gene expression linked to 
the development of the characteristic age-related liver pathologies6.  These 
include hepatocellular carcinoma, fibrosis, cirrhosis, and unhealthful 
apolipoprotein and fatty acid biosynthesis.  Aging increased gene 
expression associated with inflammation, cellular stress, and fibrosis, and 
reduced capacity for apoptosis, negative cell-growth control, and phase I 
and II xenobiotic metabolism.  In this study, CR (calorie restriction) from 
weaning [long-term CR (LT-CR)], reversed the majority of these changes.  
Surprisingly, in very old mice just 2 to 4 weeks of CR [short-term CR (ST-
CR)] reversed approximately 70% of these age-related changes in gene 
expression.   

LT-CR and ST-CR also produced changes in the expression of genes 
which did not change with age.  These CR-specific changes involved 
increased gluconeogenesis and disposal of the byproducts of extrahepatic 
protein catabolism, reduced glycolysis, and healthful changes in 
apolipoprotein and fatty acid biosynthesis.  In addition, LT-CR and ST-CR 
produced changes in gene expression associated with enhance anti-
proliferative growth control, increased apoptosis and reduced chemical 
carcinogenesis.  A number of other alterations in gene expression are 
associated with enhanced longevity in mice.  

 
2. MICROARRAYS 

 
Quantitative change in the activity of specific genes can control the rate of 
aging in invertebrates and mammals7,8.  Although there have been many 
studies of the relationship between aging, CR and hepatic gene expression, 
there are serious shortcomings in this literature.  There are numerous cross-
sectional studies of gene expression in animals of various ages which are 
interpreted as showing that the major effect of CR is to prevent age-related 
changes in gene expression (e.g. Ref 9).  This interpretation has become 
pervasive in the literature, despite the cross-sectional nature of the studies.  
Funding and publication bias has reinforced this notion, producing a 
literature replete with reports of age-related changes in gene expression 
which appear to be prevented by CR.   

Genome-wide DNA-microarrays are capable of quantifying the 
expression of all know genes in a single experiment.  A significant strength 
of this approach is the absence of hypothesis-based bias in the choice of 
genes which are studied.  Instead, a comprehensive profile of the 
relationship between a physiological state and gene expression is generated.  
Application of this technology has revealed the gene expression signatures 
underlying the physiological effects of aging, CR, and the dwarf 
mutations6,10-14.  In this way, microarrays are providing insights into aging, 
the development of age-related diseases, and the ameliorative actions of CR.   

Our studies using this technology suggest that rather than simply 
preventing age-related changes in gene expression, CR instead acts rapidly 
to establish a new profile of gene expression which may better resist aging.  
Overall, ST-CR reproduced nearly 70% of the effects of LT-CR on genes 
that changed expression with age6.  Thus, CR rapidly reversed, rather than 
prevented, many age-related changes in gene expression.   

Another important effect of LT- and ST-CR was to establish the CR-
specific patterns of gene expression.  These CR-specific changes were in the 
same functional categories as the age-related changes.  Further, CR in 
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young mice produced gene expression changes which were a subset of those 
produced in old CR mice.  These similarities between CR in young and old 
mice, and between ST- and LT-CR led us to conclude that CR rapidly 
produces a new pattern of gene expression which better resists aging.  

3. INTRA- AND INTERCELLULAR SIGNALING 

Recently, a small family of single gene mutations which interfere with 
growth hormone (GH)/insulin-like growth factor-1 (IGF-1) signaling, 
resulting in dwarfism, have been shown to increase mean and maximal 
lifespans of mice by 40% to 70% beyond those of their heterozygous 
siblings8,15,16. The dwarf mice are homozygous for loss-of-function 
mutations in the Pit1 (Snell dwarf mice), Prop1 (Ames dwarf mice), or GH 
receptor (GHR KO mice) loci.  The Pit1 and Prop1 mutations prevent 
differentiation of the anterior pituitary, decreasing levels of thyroid 
hormone, growth hormone, IGF-1 and prolactin.  The GHR KO is a more 
focused mutation, which prevents receptor mediated GH responsiveness.  
The mutations appear to slow the intrinsic rate of aging.  Snell dwarf mice 
show delays in age-dependent collagen cross-linking and in six age-
sensitive indices of immune system status. These findings demonstrate that 
a single gene can control maximum lifespan and the timing of both cellular 
and extracellular senescence in mammals.  The already enhanced lifespan of 
Ames dwarf mice can be further extended ~25% by CR17.   
 Our microarray studies found that the hepatic expression of IFG-I 
binding protein 1 decreased with age.  This protein plays an important role 
in the negative regulation of the IGF-1 system, a stimulator of mitogenesis18.  
Given what is now known about the apparent role of IGF-1 signaling in 
aging, this change may have both pro-cancer and anti-aging effects.   
 CR repressed expression of GH receptor and iodothyronine deiodinase 
type I mRNA in the liver of both young and old mice, and induced 
overexpression of IGF binding protein mRNA, which inhibits IGF-1 
signaling.  Reduction in iodothyronine deiodinase type I expression should 
reduce hepatic conversion of the pro-hormone form of thyroid hormone (T4) 
to the active form (T3).  Down-regulation of this enzyme is likely 
responsible for the reduced levels of circulating T3 found in CR rodents19.  
Short-term treatment with low-calorie diets rapidly reduces circulating T3 
levels in morbidly obese men, apparently by reducing type I deiodinase 
activity20.  Thus, CR appears to reduce thyroid hormone action in CR mice 
and humans.   
 Thus, some of the changes in gene expression induced by CR in mouse 
liver are associated with decreased GH receptor, IGF-1, and thyroid 

hormone signaling.  This is highly suggestive of the lifespan extending 
effects of the Prop-1 and Pit-1 mutations21.  It suggests that the dwarf 
mutations and CR may work in part through the same signal transduction 
pathways.  

4. AGE-RELATED INFLAMMATION 

Published microarray studies of mammalian aging found that aging was 
associated with changes in gene expression linked to the development of the 
characteristic age-related pathologies of tissues such as liver, muscle and 
brain6,13,22,23.  Our microarray studies of mouse liver revealed that aging was 
associated with other gene expression changes consistent with pathogenesis.  
We found age-associated induction in the expression of several genes 
important in inflammation including lysozyme and complement component 
1, q, β6.  Lysozyme is a myeloid cell-specific marker.  Induction of this 
gene is normally associated with macrophage activation24.  Complement 
component 1, q, β, a macrophage expressed protein, is a part of the 
recognition set of the complement C system, the primary humoral mediator 
of antigen-antibody reactions25.  Activated macrophages, along with other 
inflammatory cells, are involved in a large number of liver diseases 
including cirrhosis, hepatitis, and sepsis- and endotoxin-induced liver 
injury26.  
 Old mice also overexpressed the mRNA for biglycan, a proteoglycan of 
the hepatic extracellular matrix, serum amyloid P-component, a 
glycoprotein present in all amyloid deposits, and cystatin B, an inhibitor of 
cysteine proteinases.  In areas of inflammation, fibrogenic myofibroblasts 
express biglycan and other proteoglycans, lead to hepatic fibrosis27.  Serum 
amyloid P-component is one of the major acute phase reactants induced by 
inflammation in hepatocytes28.  Cystatins and their target enzymes play a 
role in many pathological events, including inflammatory disease29.  In the 
liver, an imbalance between cystatins and their targets can disregulate 
matrix degradation and accumulation, leading to hepatic fibrosis30.  
 CR suppressed the age-associated increase in inflammatory and stress 
response genes.  Consistent with decreased inflammatory response gene 
expression, CR delays the onset and diminishes the severity of autoimmune 
and inflammatory diseases in mice31.  Decreased chaperone and stress 
response gene expression suggests that CR reduces the age-related 
physiological stress on the liver.  Further, as discussed below, reduced 
chaperone expression is proapoptotic and anti-neoplastic.  Thus, these 
effects may explain the delayed onset of hepatoma in CR mice32. 
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5. APOPTOSIS AND TUMORIGENESIS 

Hepatocytes are mitotically competent, although they have long, mostly 
intermitotic lifespans.  These lifespans appear to lead to the incremental 
accumulation of damage, and the gradual impairment of physiological 
functions.  Thus, there is an important role for apoptosis in the maintenance 
of hepatic function.  Apoptosis was initially viewed as potentially injurious 
to tissues, because it destroys cells.  The current view recognizes that the 
role of apoptosis in aging is most likely tissue-specific.  In every tissue, a 
balance must be struck between the need to maintain cell number and 
function, and the need to eliminate damaged, potentially toxic or neoplastic 
cells.  This decision is crucial in largely postmitotic tissues such as brain.  
Brain apoptosis can contribute to neurological disorders of aging, including 
Alzheimer's disease, Parkinson’s disease and stroke33. 
 Hepatocytes are exposed to genotoxins from the diet and from free 
radicals generated by xenobiotic metabolism and beta-oxidation.  These can 
produce elevated levels of DNA damage, a potential source of neoplasia.  
Apoptosis acts to eliminate the damaged and preneoplastic cells, which are 
then replaced by cell proliferation, thus maintaining homeostatic liver 
function.   
 The predominant morphologic change in aging human liver is termed 
brown atrophy34.  A brown color in aged liver cells results from the 
accumulation of lipofuscin in lysosomes.  Liver atrophy results from an 
age-related decline in liver mass, resulting in fewer, larger hepatocytes.  
These observations suggest that aging is accompanied by a disregulation of 
apoptosis and cell division which fails to maintain youthful hepatocyte 
number and function during aging.  Consistent with this idea, aging is 
associated with a decline in the rate of liver regeneration and apoptosis35,36.  
Likewise, aging is accompanied by an increase in liver tumors37,38. 

6. AGING, CR AND HEPATIC CELL DIVISION 

Our microarray studies found that 23% of the genes which decreased 
expression with age are involved in DNA replication and regulation of the 
cell cycle6.  Most of these genes have a negative effect on cell growth and 
division.  Thus, hepatic aging may be accompanied by a general loss of 
negative control of cell division.  Among these genes, the product of 
phosphatase and tensin homolog gene is a tumor suppressor which induces 
cell-cycle arrest through inhibition of the phosphoinositide 3-kinase 
pathway39.  B-cell translocation gene 2 is a tumor suppressor which 
increases expression in response to DNA damage40.  The murine gene 

product of the amino-terminal enhancer of split is a potent co-repressor of 
gene expression and cellular proliferation41.  Calcium binding protein A11 
binds to and regulates the activity of annexin II, which is involved in the 
transduction of calcium-related mitogenic signals42.  As discussed above, 
IGF binding protein 1 negatively regulates the IGF-1 signaling18.  Therefore, 
this change may be mitogenic.   

Seventy-eight percent of the mice of this strain and sex fed the control 
diet used here die of some form of neoplasia, and the death rate from 
neoplasia accelerates dramatically with age32.  Approximately 21% of these 
mice die of hepatoma, mostly late in life.  Decreased expression of the 
negative growth regulators and overexpression of the chaperone genes with 
age are consistent with this higher incidence of hepatoma in aged mice.   

LT- and ST-CR induced the expression of cyclin-dependent kinase 2-
associated protein 1, a putative tumor suppressor gene43.  Overexpression of 
this gene suggests that LT- and ST-CR enhance anti-proliferative growth 
control.  Consistent with this idea, IGF binding protein 7 gene expression 
was induced by LT-CR.  The product of this gene functions both as an IGF 
binding protein and independently of IGF as a growth-suppressing factor44.  
The expression of IGF binding protein 1, which has anti-growth activity 
through its inhibition of IGF-1 signaling, was reduced by age and restored 
by ST-CR.  Thus, LT- and ST-CR may produce additional anti-proliferative 
effects on preneoplastic cells of the liver through their effects on the 
expression of these IGF binding protein family members. 

7. AGING AND APOPTOSIS 

Our microarray studies revealed that aging in mice was accompanied by 
elevated chaperone levels and the over expression of the other anti-
apoptotic genes, myeloid cell leukemia sequence 1 and apoptosis inhibitory 
protein 6.  These observations suggested that aging should be accompanied 
by a decrease in apoptotic potential of the liver.  In contrast to this 
expectation, a number of studies reported that aging is accompanied by an 
increase in the intrinsic rate of apoptosis in rodent liver45,35,46.   
 However, a recent study has clarified this conundrum.  Suh et al. 
showed that the intrinsic rate of apoptosis in liver does increase slightly 
with age.  But the increase was not significant in their study.  However, they 
found a large and significant decrease in the apoptotic potential of the liver 
with age36.  Brief exposure to a direct-acting genotoxic alkylating agent 
produced high rates of apoptosis in the liver of young rats, but little 
apoptosis in the livers of old.  These results suggest that the apoptotic 
capacity of the liver declines with age, while the basal rate of apoptosis may 
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increase slightly.  These data suggest that damaged and preneoplastic cells 
likely accumulate with age in the liver.  This interpretation is consistent 
with the increase in brown atrophy and hepatocellular neoplasms with age 
in mouse and man .  37,47

8. CR AND APOPTOSIS 

Our genome-wide microarray studies found that 21% of the genes which 
changed expression in response to LT- and ST-CR are associated with 
apoptosis, cell growth, or cell survival6.  LT-CR induced the expression of 
the Bcl2 homologous antagonist / killer and voltage-dependent anion 
channel 1 (porin) genes.  Bcl2 homologous antagonist / killer is a pro-
apoptotic member of the Bcl2 family of apoptosis regulators.  It directly 
interacts with porin to release the pro-apoptotic factor cytochrome c from 
mitochondria, initiating apoptosis48.  The overexpression of porin found in 
ST-CR mice is consistent with the increase in apoptosis and reduction in 
chemical carcinogenesis found in fasting rodents49,50.  LT-CR decreased the 
expression of the anti-apoptotic genes interferon inducible ds RNA 
dependent inhibitor, X-box binding protein, and lymphocyte antigen 6 
complex, locus E51-53.   

ST-CR reproduced the effects of LT-CR on the expression of 50% of 
the cell-cycle / DNA replication and apoptosis genes.  The combination of 
these effects on gene expression suggests that ST-CR may be capable of 
rapidly reproducing the anti-neoplastic effects of LT-CR in very old 
animals.  This conclusion is consistent with studies showing that short-term 
fasting increases apoptosis in preneoplastic lesions, and reduces rates of 
chemical carcinogenesis in the liver49.   
 There is compelling evidence that CR increases the rate of apoptosis in 
preneoplastic and normal cells.  The rate of apoptosis in the liver of mice, as 
measured using terminal dUTP nick end labeling (TUNEL) of apoptotic 
bodies, was 3 times higher in CR mice54.  Increased hepatocyte apoptosis 
was associated with a significantly lower incidence of spontaneous 
hepatomas throughout the lifespan of the CR mice.  Using glutathione S-
transferase-II (GST-II) as an immunohistochemical marker of preneoplastic 
liver cells, a progressive rise in GST-II labeling was seen with age in 
control mice38.  This increase was associated with a high incidence of GST-
II positive liver tumors.  GST-II expression was negligible in CR mice, 
which had a significant decrease in tumor incidence.  One week of CR 
induced apoptosis in the GST-II-positive hepatocytes.  In another study, CR 
eliminated 20-30% of liver cells by apoptosis, decreasing the number of 
preneoplastic liver foci by 85%55.  Apoptosis is significantly higher at all 

ages in hepatocytes from CR mice35.  CR enhances apoptosis in other 
organs as well, including gastrointestinal tract, bladder, spleen and lymph 
nodes56-58.  

9. CHAPERONES, AGING, AND CR

A consistent finding of our genome-wide microarray and conventional 
studies was that the mRNA and protein levels of essentially every 
endoplasmic-reticulum chaperone increased with age and decreased with 
CR in the liver6,59-61.  Similar results were obtained in several other tissues.  
The induction of chaperone gene expression in the livers of aged mice may 
be a physiological adaptation to increased oxidative or possibly other stress 
during aging.  For a number of years the meaning of these changes was 
unclear.  In the past few years, the relationship between chaperones and 
health is beginning to be understood.   

Stress-inducible chaperones respond to a diverse group of stimuli 
including heat, oxidative and ischemic stress, inflammation, hemodynamics, 
and exposure to toxic chemicals62-64.  Under such conditions, these 
inducible chaperones associate with abnormally folded proteins to promote 
their renaturation, prevent their aggregation, or promote their degradation if 
they cannot be properly refolded.  A number of years ago, Richardson and 
his colleagues found that the heat inducibility of the stress-responsive 
chaperone, hsp70 was significantly reduced in hepatocytes isolated from old 
rats65.  Similar results were found in fibroblasts from donors of various 
ages66.  Richardson and colleagues also found that in old rats maintained on 
LT-CR, there was no decrease in the response of hsp70 to hyperthermia65.   
 However, inducible chaperones like hsp70 cannot be detected in the 
absence of physiological stress.  They play a different role than the 
chaperones which are present continuously in cells in the absence of 
physiological stress, which is by far the most common physiological state.  
Most proteins require interactions with constitutively expressed molecular 
chaperones for their biosynthesis, maturation, processing, intracellular 
transport, and secretion67.  Chaperones also perform cytoprotective 
functions, including prevention of protein denaturation and aggregation, the 
repair of structurally damaged proteins68, and promotion of the ubiquination 
and proteasomal degradation of malfolded, damaged proteins69,70.  In this 
context, it might appear that constitutive overexpression of chaperones 
would be healthful, perhaps by preventing the accumulation of lipofuscin.  
However, another function of chaperones appears to mitigate this possible 
benefit.   
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Chaperone levels are a part of molecular decision making following 
genotoxic stress.  Elevated chaperone levels tip the balance away from 
apoptosis and toward cell survival71,72.  As described above, aging increases 
chaperone expression and decreases the apoptotic response to genotoxic 
stress36.  The increase in chaperone expression with age may explain why 
hepatocellular neoplasms are the most common lesions in older mice37,47.  
In contrast, CR, which reduces endoplasmic reticulum chaperone levels in 
the liver and other tissues, enhances apoptosis72-76.  Enhanced apoptosis by 
CR may account for its well-documented anti-cancer benefits77.   
 The linkage between chaperone levels and apoptosis also extends to 
fasting and feeding.  While feeding increases chaperone levels, fasting 
reduces the levels of nearly every endoplasmic reticulum and cytoplasmic 
chaperone we investigated61,78.  Fasting also increases apoptosis of 
preneoplastic lesions and reduces the rate of chemical carcinogenesis49,50.  
This connection between caloric intake and chaperone levels may link food 
intake to the capacity for protein folding, assembly, and processing within 
cells.  The level of chaperone expression in response to feeding does not 
depend on endoplasmic reticulum protein trafficking78.  It appears to be 
regulated by the blood insulin-to-glucagon ratio. 

10. MOLECULAR MECHANISMS LINKING CHAPERONES, PROTEIN 
SECRETION AND CARCINOGENESIS 

Chaperone induction has emerged as a new anti-apoptotic mechanism79,80.  
Elevated chaperone levels during tumorigenesis allow cells to survive 
carcinogenesis and tumor formation81.  Induced GRP78, GRP94 and 
GRP170 are essential for the survival, growth and immuno-resistance of 
transformed cells82-84.  Tumorigenesis-associated chaperone induction 
confers drug resistance to the tumors74,85-89.  Chaperone induction allows 
precancer cells to survive the DNA damage and mutations which result in 
transformation, proliferation and onset of carcinogenesis73-76,90.   
 Chaperone induction might reduce the production or secretion of 
apoptogenic signals, or increase the production or secretion of apoptosis 
inhibitory proteins.  Several studies indicate that the abundance of 
endoplasmic reticulum chaperones influences the secretion efficiency of 
many liver proteins91-93.  The interaction between chaperones and other 
proteins can enhance either protein folding, maturation and processing, or 
enhance the degradation of proteins94,95.  It appears that the longer a protein 
spends in association with chaperones, the greater the chance it will 
undergo degradation95-98.  We found that CR, which decreased the level of 
most endoplasmic reticulum chaperones, increased the rate, efficiency and 

level of hepatic protein secretion61.  It is thus possible, that the effect of CR 
on endoplasmic reticulum chaperone levels and secretion efficiency may 
change the activity of receptor mediated apoptotic pathways.  It may change 
the display or secretion of pro- or anti-apoptotic receptors or ligands.   

The increase in secretory protein output in response to CR may also 
enhance the turnover of serum proteins.  This may decrease circulating 
levels of glycated serum proteins, which are associated with micro- and 
macrovascular damage, nephropathy, neuropathy, retinopathy and 
atherosclerotic disease99,100.  Modified plasma proteins appear to be 
significant contributors to the development of age- and diabetes-related 
renal, vascular, ocular and neurological pathologies, and to aging itself101-103.  
CR reduces the age-related accumulation of glycoxidation products in blood 
and tissue proteins104-106.   

11. XENOBIOTIC METABOLISM 

The effect of aging on hepatic drug metabolism is extremely important due 
to its effects on both carcinogenesis and its practical implications in 
determining the drug doses that are safe for older individuals.  A decline in 
hepatic drug metabolism and clearance, and an increase in adverse drug 
reactions are common hallmarks of human and rodent aging.  The liver’s 
capacity to metabolize xenobiotics declines with age4.  Pharmacokinetic 
evidence in humans indicates that aging is accompanied by reduced liver 
phase I drug metabolism.  For example, cytochrome P450 content in human 
subjects decreases 30% after 70 years of age107.  Altered drug metabolism 
has been attributed to a decline in liver volume and blood flow in humans, 
although these changes may only partly account for the decline in the 
metabolism and clearance of drugs with aging in man107.  In rodent studies, 
there is compelling evidence for a decline in phase I and phase II enzyme 
activities and expression, although the specific enzymes which are altered 
may vary with strain and species6,108-110.   

In our microarray and conventional studies, aging decreased expression 
of xenobiotic metabolism genes6.  This is an additional class of pro-
neoplastic changes in gene expression encountered in our microarray 
studies.  The genes for the phase I enzymes amine N-sulfotransferase and 
three cytochrome P450 isozymes, as well as the gene for the phase II 
enzyme glutathione S-transferase-like gene were negatively regulated by 
age.  Decreased expression of Phase I enzyme genes in the liver of aged 
rodents has been reported in many studies108,111,112.  Decreased expression of 
such genes is likely responsible in part for the age-related decline in the 
xenobiotic metabolizing capacity of the liver. This decline is a recognized 
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source of adverse drug reactions in aged mammals2.  It may contribute to 
the increase in neoplasms with age in mice.  

LT- and ST-CR reversed the age-related decrease in the expression of 
genes such as the B-cell translocation gene 2, amino-terminal enhancer of 
split, glutathione-S-transferase like, amine N-sulfotransferase, and 
cytochrome P450, 2f2 mRNAs.  This CR effect is consistent with the 
delayed onset of hepatoma in CR mice.  Partial restoration of the hepatic 
drug metabolizing and detoxifying functions of the liver may be a source of 
the anti-aging and anti-cancer effects of CR.  These results suggest that ST-
CR may rapidly restore some differentiated functions in tissues of older 
animals. 

12. INTERMEDIARY METABOLISM 

Energy metabolism in the liver is altered by aging.  For example, at least 
two studies have shown decreased mitochondrial respiratory rates in the 
liver with age113,114.  Perhaps the major effects of age are on homeostatic 
glucose regulation.  The liver plays a critical role in maintaining glucose 
homeostasis.  This homeostasis is controlled by hormones such as insulin, 
glucagon, growth hormone, and IGF-1.  High levels of glucose and insulin 
are implicated in many age-associated pathologies115.  Likewise, loss of 
homeostatic glucose regulation is a hallmark of mammalian aging116.  CR 
reduces blood glucose and insulin concentrations in rodents, primates and 
humans117-119.  Disorders associated with elevated glucose levels are 
reduced or mitigated entirely by CR.  These facts indicate that the anti-
aging effects of CR may be mediated by alteration of the normal sequence 
of age-related metabolic changes in the liver. 

Figure. 1. Summary of the effects of age and CR on the glycolytic and gluconeogenic 
pathways of the liver.  Glycolytic metabolism in the liver involves three irreversible, 
regulated steps.  Glucokinase (GK) initiates glucose metabolism by phosphorylation 
of C6 yielding glucose 6-phosphate (G6P).  The committed step in glycolysis, and 
the second irreversible and regulated step, is the phosphorylation of Fru 6-P by 
phosphofructokinase (PFK-1) to produce fructose 1,6-bisphosphate (Fru 1,6-P2).  
The third irreversible step controls the outflow of the pathway.  
Phosphoenolpyruvate (PEP) and ADP are utilized by pyruvate kinase (PK) to 
produce pyruvate (PYR) and ATP.  Pyruvate dehydrogenase (PDH) oxidatively 
decarboxylates pyruvate to form acetyl-CoA, which is a bridge between glycolysis 
and the tricarboxylic acid cycle.  Phosphoenolpyruvate carboxykinase (PEPCK) 
catalyzes the first committed step in gluconeogenesis.  The main non-carbohydrate 
precursors for gluconeogenesis are amino acids from the diet, and from muscle 
protein breakdown.  Other organs also contribute amino acids, but muscle is the 
major source.  Most of these amino acids are converted to oxaloacetate (OA), which 
is metabolized to PEP by PEPCK.  In the second regulated and essentially 
irreversible step in gluconeogenesis, fructose 1,6-bisphosphatase (Fru 1,6-P2ase) 
catalyzes the formation of fructose 6-phosphate (Fru 6-P) from fructose 1,6-
bisphosphate (Fru 1,6-P2).  Finally, in the third essentially irreversible reaction of 
gluconeogenesis, glucose is formed by the hydrolysis of G6P in a reaction catalyzed 
by glucose 6-phosphatase (G6Pase).  Substrates are not boxed, enzyme names are in 
shaded boxes, summaries of experimental results are in double bordered boxes, and 
amino acids are indicated by “AA” in triple bordered boxes.  When two values are 
given following “CR”, they represent the fold change in the young and old mice, 
respectively.  The value after “Age” is the main effect of age.  A down arrow 
indicates the percent decrease, an up arrow indicates the fold increase.  The value 
given for age is a combination of both dietary groups.  NC is no change
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13. AGING AND HEPATIC ENERGY METABOLISM 

In general terms, our studies of the effects of aging on key hepatic and 
muscle enzymes of glucose homeostasis indicated that aging is 
accompanied by a decline in the enzymatic capacity for the turnover and 
utilization of peripheral protein for the production of glucose by the liver 
(Figs. 1 and 2).  We found an age-related decrease in the expression of 
phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase 
(G6pase) mRNA in the liver of mice (Fig. 1)120,121.  An age-related decrease 
in PEPCK mRNA also was reported in hepatocytes isolated from rats of 
various ages122.  This enzyme catalyzes the committing step in 
gluconeogenesis, the conversion of oxaloacetate to phosphoenolpyruvate 
(Fig. 1).  Once carbon is converted to phosphoenolpyruvate it will be 
converted to glucose in the liver.  PEPCK controls the flow of carbon for 
hepatic glucose production.  This carbon is derived from amino acid 
intermediates (principally glutamine) derived from the turnover of protein 
in the periphery for energy generation.  There are no known allosteric 
modifiers of the activity of any PEPCK isoform123.  PEPCK mRNA and 
activity are excellent indicators of the enzymatic capacity for 
gluconeogenesis in the liver.  Thus, aging appears to reduce the 
gluconeogenic capacity of the liver (Fig. 1).   
 Liver gluconeogenesis derives its substrates mainly from protein 
turnover in the peripheral tissues, suggesting that aging is accompanied by a 
decrease in the turnover of peripheral protein.  During the postabsorptive 
state, muscle and other tissues utilize amino acids derived from protein 
turnover to generate energy via the TCA cycle.  This amino acid catabolism 
is initiated in the muscle by two enzymatic steps, collectively called the 
transdeamination reaction (Fig. 2).  Transdeamination leads to the liberation 
of the amino nitrogen as ammonia.  Because of its extreme toxicity, this 
ammonia is transferred to glutamate by glutamine synthetase, producing 
glutamine.  Glutamine serves to transfer both carbon and nitrogen to the 
liver.  Aging leads to a decrease in the activity of muscle glutamine 
synthetase.  This is consistent with an age-related decrease in the turnover 
of peripheral protein for energy production.  It is also consistent with 
decreased expression of hepatic carbamylphosphate synthase-1, glutamine 
synthetase, and tyrosine aminotransferase (TAT; Fig. 2).   

Glutamine produced in the muscle is metabolized in the liver by 
glutaminase into glutamate and ammonia.  The ammonia derived from this 
reaction can be returned to the glutamine pool by liver glutamine synthetase 

(Fig. 2).  An age-related decrease in glutamine synthetase activity would 
channel glutamine into gluconeogenesis.  The nitrogen from this glutamine 
would be channeled by carbamylphosphate synthase-1 into the urea cycle 
for detoxification and disposal.  These effects are likely responsible for a 
part of the decrease in muscle protein synthesis and turnover known to 
occur with age124. 
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Figure 2.  Summary of the effects of age and diet on muscle and liver nitrogen 
metabolism.  In muscle and other extrahepatic tissues, the degradation of proteins to 
amino acids is utilized for generating metabolic energy.  Transdeamination of amino 
acids produces tricarboxylic acid cycle intermediates and ammonia.  Glutamine 
synthetase synthesizes glutamine from glutamate and ammonia.  Glutamine is 
transported to the liver where glutaminase releases the ammonia, regenerating 
glutamate.  CPSI converts this ammonia to carbamyl phosphate, which is converted 
to urea in the urea cycle.  The amino group of excess tyrosine is released by TAT as 
ammonia, which is also detoxified beginning with the action of cpsI.  In the figure, 
substrates are not boxed, enzyme names are in shaded boxes, and summaries of 
experimental results are in double bordered boxes.  When two values are given 
following “CR”, they represent the fold change in the young and old mice, 
respectively.  The value after “Age” is the main effect of age.  A down arrow 
indicates the percent decrease, an up arrow indicates the fold increase.  The value 
given for age is a combination of both dietary groups.  NC is no change.   

14. CR AND HEPATIC ENERGY METABOLISM 

In our microarray studies, CR modified the expression of a significant 
number of genes coding for key metabolic enzymes6.  ST-CR increased 
expression of glutamate oxaloacetate transaminase 1 and decreased 
expression of pyruvate dehydrogenase E1α subunit.  These changes are 
consistent with our conventional molecular-biological and biochemical 
studies showing that CR increases shuttling of nitrogen and carbon to the 
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liver from the peripheral tissues.  It increases the enzymatic capacity of the 
liver for gluconeogenesis and the disposal of the byproducts of extrahepatic 
protein catabolism for energy production, while reducing the enzymatic 
capacity for glycolysis121,125.  These CR effects are consistent with theories 
of aging, such as the oxidative stress theory, which postulate that the 
accumulation of damaged proteins contributes to the rate of aging126.   

CR increased fasting levels of the mRNA and activity of PEPCK and 
mRNA of G6pase121.  The abundance of PEPCK mRNA was greater in the 
liver of young and old CR mice than it was in control mice of the same ages.  
PEPCK activity also was higher in the liver of CR mice.  As discussed 
above, aging decreased the mRNA for PEPCK and G6Pase.  In addition, 
when CR and control mice were fasted overnight and fed their normal daily 
ration of food, PEPCK mRNA and activity decreased within 1.5 hours of 
feeding in both control and CR mice.  However, its mRNA abundance and 
activity increased rapidly thereafter, especially in CR mice.  By 5 hours 
after feeding, PEPCK activity in CR mice was approximately twice that of 
controls.  Similarly, G6Pase mRNA abundance was higher in CR mice for 
the 5 hours following feeding.  G6Pase catalyzes the terminal step in 
hepatic glucose production, the hydrolysis of glucose 6-phosphate to 
glucose and inorganic phosphate (Fig. 1).  This step leads to the release of 
glucose from the liver into the circulation when blood glucose levels would 
otherwise fall.   

Together, these results suggest that the enzymatic capacity for 
gluconeogenesis returns rapidly after feeding.  Thus, higher levels of 
peripheral tissue turnover persist in CR mice, even after feeding.  These 
mice are at approximate weight equilibrium127.  Therefore, in CR mice 
feeding is accompanied by intensified protein biosynthetic activity followed 
immediately by peripheral protein turnover.  CR mice are approximately 4 
times more insulin sensitive than control mice120.   

Consistent with the interpretation offered above, CR and age decreased 
the expression of glutamine synthetase activity and mRNA in the liver, 
while age decreased and CR increased its expression in muscle (Fig. 2).  
These differential effects should lead to a transfer of carbon and nitrogen in 
the form of glutamine from the periphery to the liver, where it would 
increase the hepatic pool of glutamine.  The increase in glutaminase 
expression would increase hepatic catabolism of glutamine, producing 
glutamate and ammonia.  mRNA levels closely reflect the levels of 
glutaminase activity128,129.  Ammonia production by glutaminase is closely 
coupled to urea synthesis by CPSI.  CPSI mRNA levels in young and old 
CR mice were twice that of control mice121,125.  CR leads to coordinate 

induction of carbamylphosphate synthase-1 transcription, mRNA, protein, 
and activity130.  The resulting glutamate accumulation would fuel CR 
enhanced gluconeogenesis.   

These data support the interpretation that CR leads to enhanced carbon 
flux from amino acid degradation in the peripheral tissues to the liver.  This 
amino acid degradation extends to tyrosine, an amino acid that requires a 
liver specific enzyme, TAT, for catabolism121.  TAT degradation of tyrosine 
is well known to provide ketogenic and gluconeogenic substrates to the 
liver when glucose is limiting and amino acids are utilized as a major source 
of energy.  Aging decreased TAT mRNA in the liver by an average of 37%.  
TAT mRNA in CR mice was approximately double the level in control 
mice.  The age-related changes in nitrogen metabolizing enzymes are 
consistent with a decrease in catabolism of extrahepatic protein for energy.  
CR appears to enhance the capacity for mobilizing and transporting carbon 
and nitrogen products of muscle protein catabolism to the liver.  CR mice 
also have enhanced hepatic capacity for the biosynthesis of glucose from 
this carbon, and for the detoxification of this nitrogen. 

15. CONCLUSIONS 

While the physiological and structural studies of the liver suggest that it 
ages well, the molecular biology and biochemistry of the liver indicate that 
it undergoes changes with age that have serious systemic effects.  Genome-
wide microarray and conventional molecular and biochemical studies 
indicate that there is an age-related shift in liver toward a state associated 
with oncogenesis, fibrosis, cirrhosis, and unhealthful apolipoprotein and 
fatty acid biosynthesis.  Evidence was found for age-related increases in 
inflammation, cellular stress, and fibrosis; and for reduced capacity for 
apoptosis, negative cell-growth control, and phase I and II xenobiotic 
metabolism.  LT- and ST-CR reversed the majority of these changes.  LT-
CR also produced CR-specific changes in signal transduction-associated 
gene expression known to lead to enhanced longevity.  Evidence for a CR-
related increase in the turnover and renewal of peripheral protein also was 
found.  In addition, healthful changes in apolipoprotein and fatty acid 
biosynthesis-related gene expression were found.  LT- and ST-CR produced 
changes in gene expression associated with enhanced anti-proliferative 
growth control, increased apoptosis and reduced chemical carcinogenesis.  
Together these studies make it clear that aging and its mitigation by CR are 
multifaceted processes which affect many aspects of liver function at the 
molecular level.  It also appears that unbiased, exploratory approaches such 
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as the genome-wide microarray studies described here are providing new 
and valuable insights into these processes. 
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